
MoDE: A UIMS for Smaltalk

00 TR90-01 7

DTIC Apri, 1990
A% ELECTE

N ~ I NOV07 1990 E

Yen-Ping Shan

Approved tot pu.h e i ..

The University of North Carolina at Chapel Hill
Department of Computer Science
CB#3175, Sitterson H'all
Chapel Hill, NC 27599-3175

A TextLab Report
UNC is an Equal Opportunity/Affirmative Action Institution.

90] ! 24 h

Z~ cIS
DIC Tie, [_

Justifcil

DiSi u-onjI

MoDE: A UIMS for Smcaltalk Aviabilty Cd

Yen-Ping Shan Dist vi c, o

Department of Computer Science

University of North Carolina
Chapel Hill, NC 27599-3175

shan~cs.unc.edu
(919) 962-1874

Abstract
"-

While the Model-View-Controller (MVC) framework has contributed
to many aspects of user interface development in Smalltalk, interfaces.
produced with MVC often have highly coupled model, view, and con-
troller classes. This coupling and the effort required to use MVC make
user interface creation a less effective aspect of Smailtalk.

The Mode Development Environment (MoDE) is a user interface
management system (UIMS) which addresses the above issues. MoDE
is composed of two major components: the Mode framework and the
Mode Composer. The Mode framework accommodates an orthogonal
design which decouples the user interface components and increases
their reusability. The Mode Composer reduces the effort of using
MoDE by providing a direct-manipulation user interface to its users.
This paper discusses the importance of orthogonality and illustrates
its incorporation into the design of MoDE. A comparison of the Mode
framework and the MVC framewprk is included. " ,) ' ., 'I -

Dist. "A" per telecon Dr. Ralph Uachter.
ONR/code 1133.

VHG 11/06/90

1 Introduction

Smalltalk [2] has been a nice environment for developing experimental soft-

ware. Its carefully designed programming environment and its rich class

library allow exploring a design alternative in a short amount of time. The

Model-View-Controller (MVC) framework [1, 3] is the major means of build-

ing user interfaces in Smalltalk. Although MVC framework has contributed

to many aspects of user interface development in Smalltalk, it also has some

shortcomings. While the MVC concept provides a compelling object-oriented

division at the abstract level, concrete implementations often result in highly

coupled model, view, and controller classes. Such coupling impedes the reuse
and interchange of software components and at the same time produces awk-

ward inheritance structures. Also, substantial learning effort is required be-

fore a programmer can effectively use MVC. Even for experienced MVC pro-

grammers, the time spent in creating a new user interface is still a substantial

portion of the overall system development time.

The Mode Development Environment (MoDE) is a user interface man-

agement system (UIMS) that addresses the above issues. MoDE is composed

of two major components: the Mode framework and the Mode Composer.

Based on the high-level concepts of the MVC framework, the Mode frame-
work emploies an orthogonal design to decouple the appearance, interaction

and semantics components of an interaction technique. This not only allows
better reuse of these components, but also results in a more flexible frame-

work. The Mode Composer is the direct-manipulation interface of MoDE.

Users of Mode Composer create interfaces by dragging objects out of the
interaction technique library and pasting them together. With the Mode

Composer, the effort and time required to create interfaces in Smalltalk is

greatly reduced.

2

After a brief discussion of the Smalltalk MVC paradigm and its problems

in the next section, Section 3 defines the concept of "mode." Section 4 il-

lustrates why the orthogonality introduced in Section 3 supports generality

and good reusability of user interface components. Section 5 introduces the

kernel classes of the Mode framework. Section 6 compares the Mode frame-

work with the original MVC framework. The Mode Composer is described

in Section 7. Section 8 discusses the experience with MoDE. Section 9 then

closes with some final remarks.

2 MVC and It's Problems

The MVC paradigm divides the responsibility for a user interface into three

types of objects:

Model: The model represents the data structure of the application. It con-

tains or has access to information to be- displayed in its views.

View: The view handles all graphical tasks; it requests data from the model

and displays the data. A view can contain subviews and be contained

within superviews. The superview/subview hierarchy provides window-

ing behavior such as clipping and transformations.

Controller: The controller provides the interface between its associated

model/view and the user input. The controller also schedules inter-

actions with other controllers.

The three parts of a user interface are interconnected as shown in Fig-

ure 1. The standard interaction cycle is that the user takes some input action

and the active controller responds by invoking the appropriate action in the

3

Use ipu CntolerView Display output

Figure 1: The Model-View-Controller framework.

model. The model carries out the prescribed operation, possibly changing its

state, and broadcasts to all its dependent views (through the implicit links)
that it has changed. Each view can then query the model for its new state

and update its display, if necessary.

Although the MVC concept provides a convenient object-oriented division

at the abstract level, the division is rather hard to implement. In Smalltalk,

the MVC framework is implemented as three abstract superclasses (namely

Model, View, and Controller). Numerous subclasses of the three abstract

superclasses implement the interaction techniques used in the Smalltalk. Al-

most every model has a special view and controller pair associated with it.

For example, the FillInTheBlank model has the FillInTheBlank View and
the FillInTheBlankController. When this is done, the use of a controller,

for instance, is limited to the view and model with which it is associated.

Assigning a different controller to a view does not change the interaction but

often breaks the code. As explained in Section 4, this kind of coupling often

hinders the reuse of software components and prodices awkward inheritance

structures.

4

Although the MVC concept has its problems, its principle of dividing user

interface components into three parts can still be used to guide the design

of orthogonal interface components. While object-oriented inheritance alone

does not guarantee good reuse of user interface components, an orthogonal

design of those components, along with inheritance, can facilitate reusability.

In addition, orthogonality results in a more general and versatile system for

building user interfaces. The next section discusses the Mode framework that

accommodates such an orthogonal design.

3 A Design for a Mode Framework

The basic building block of the Mode framework is called a mode. Each

interface created with MoDE is composed of a number of such modes. A

mode is distinguished by an area on the screen in which interactions with the

user are different from those in its surrounding areas. A user interface might

be composed of a group of hierarchically structured modes. A mode in such

a structured interface could contain other modes as submodes. Any given

mode, however, would be a submode of only one mode - its "supermode."

The set of modes in a structured interface forms a hierarchy. The composition

of modes in the Mode framework is analogous to the composition of views in

MVC.

To illustrate, the dialogue box shown in Figure 2 can be thought of as a

mode with two submodes: a "yes" submode and a "no" submode. The yes

and no buttons (modes) highlight themselves when the left mouse button

is pressed within them, and they dehighlight themselves when the cursor

moves away or the left mouse button is released. Their behavior is different

from that of their super-mode (the containing dialogue box) which does not

respond to a left mouse button press. Notice that the text in the dialogue

5

Do you reaUy want to remove this file?

Figure 2: A dialogue box can be viewed as a mode with two submodes.

box is not a mode. It affects the appearance of the dialogue box, but it does

not form an area that provides a different interpretation of the user's input.

Each individual mode is defined by its appearance, its semantics, and the

form of interaction it provides. For example, the "yes" submode has the

following definition:

Appearance: White background with black border of width one and a piece

of text ("yes") centered. The highlighted appearance is the inverse of

the normal appearance.

Semantics: Confirm to remove the file.

Interaction: Highlight when the left mouse button is pressed inside the

mode; dehighlight when the cursor leaves or the button is released.

Notice that the "no" submode shares exactly the same interaction part

with the "yes" submode. The differences between them come from the ap-

pearance and semantics parts.

In an object-oriented design, a mode is an object. The appearance, se-

mantic, and interaction components are objects, as well. They can be pos-

sessed by mode objects, as shown in Figure 3. The mode object defines an

6

A mode object

connect to
input the applicationfrom user nw"cio r d

= or other

semantic object

Figure 3: The structure of a mode.

internal protocol so that the component objects can communicate with each

other in a standard way. Because the mode object provides a structure in
which the three component objects can be plugged and unplugged, a mode's

appearance, interaction, and semantics can be changed by replacing these

component objects. For example, a mode that highlights has two different

appearance objects: one for normal state, the other for highlighted state.

When the mode highlights, it replaces the normal display object with the

highlight display object. When it dehighlights, the normal display object is

switched back.

4 A User Interface Component Space and Its
Axes

In the above design, a mode is the composition of three parts: the appearance

object, interaction object and semantic object. By assigning an axis to each
part, we can define a three-dimensional type-space for modes, as shown in

Figure 4. Each point in the space represents a different mode type. The

7

Inerction

"No"submode

'Yes* submode------

t$.....................

/ I

-- *

' : '
S oO-

Figure 4: The three space for mode types. Two sample points are shown.
One for the "yes" button, the other for the "no" button. They share the
same interaction part.

"yes" and "no" submodes of the dialogue box example are shown as two

points in the space. They have the same interactive behavior but different
appearance and semantics. This is reflected in their sharing the same value

on the "Interaction" axis.

Orthogonality of the Axes

Axes that span a space are orthogonal if changing the value on one axis

does not affect the values on the other axes. That is to say, the axes are
independent of one-another.

It is possible to represent the same mode-types with just one axis in

which each type occupies a value o ge axis; however, this approach

is less desirable since creating a new point on the axis defines only one new

8

type. In the case of a three-space, described above, creating a new point on

one of the axes defines a plane of new types. In user interface construction,

the one-dimensional approach represents lumping all three parts of a mode
together in a single object. (Keeping them in three separate but closely

coupled objects, like what has been done in MVC, is essentially the same.)

The parts can only be reused when the whole object can be reused. In the
three-dimensional case, three parts of a mode are put into three independent

objects. The chances for each one of them to be reused are increased.

For example, assume an interaction technique library that contains two
buttons. One is square-shaped and responds to a left mouse button click

to perform operation A. The other one is round and responds to a middle

mouse button click to perform operation B. In a single-dimensional design,
to create a new button that is square-shaped and responds to middle button

click to perform operation A, one would have to create a subclass of the

first button and override the interaction. In a three-dimensional orthogonal
design, such a button can be defined simply by replacing the interaction part

of the first button with the interaction part of the second. No new class is

needed. Actually, by permuting the parts, one can have 8 different buttons

without creating any new classes.

This is a good example of how inheritance, alone, does not guarantee good
reuse whereas an orthogonal design does. Notice that the three-dimensional

orthogonal design is different from parameterizing the appearance and inter-

action of a single object. When a new appearance is invented (say a trian-

gularly shaped display object), the three-dimensional approach immediately
gives four additional new buttons. This is in contrast to the parameter-

ized single dimension approach where editing the code and recompilation is

necessary to incorporate the new shape.

Assuming the total number of types in the type-space to be N, a single

9

axis must have N distinct values to represent all the types. With three

orthogonal axes, each axis would need only .YN' distinct values, in general.

The number of distinct values for all three axes is 3 x -/'N, as opposed to

N in the single-axis case. In the above example, N is equal to 12, and

the three-dimensional approach requires 7 values (three appearances, two

interactions, and two semantics). The single-dimensional approach will need

12 values on its axis. Since N is usually much larger than 12, the three-space

representation is also more efficient.

Generality

The generality of the user interface framework depends heavily on the choice

of the axes. The more axes a framework has and the more orthogonal these

axes are, the more mode-types it can span and the more general it is. In

reality, it is difficult to find fully orthogonal axes. One can only strive for

axes that are as orthogonal as possible. The Mode framework is an attempt

to find one-such set of orthogonal axes as a demonstration of the concept.
An implementation of this framework is described in the next section. New

axes will evolve as new interaction techniques (for instance, sound) emerge.

5 Realization of the Mode Framework

The Mode framework is implemented on top of an event-driven mechanism

[5] to avoid unnecessary performance loss and to provide a clean structure

for interface programs. Four classes make up the Mode framework. They are

Mode, MController, MDisplayObject, and SemanticObject.

The Mode class implements the basic structure of a mode. It has three

instance variables to hold an MController, a MDisplayObject and a Semanti-

cObject. A Mode coordinates the activities of these three objects to perform

10

the interaction. Besides that, a Mode is also responsible for handling various
windowing functions (such as event dispatching and clipping). The Mode

class also implements a simple constraint system to manage the layout of the

user interface.

An MController performs the interaction by sending out messages accord-
ing to the types of events it receives. The instance variable "eventResponses"
of this class holds a dictionary that stores the mapping between the event

types and the messages. Upon receiving an event, an MController tries to
process it locally. When semantic actions are required, a message is sent to

the semantic object to pass it the control.

A MDisplayObject defines the appearance of a mode by maintaining a
collection of displayable objects. Any object that understands the protocols

defined in the Smalltalk DisplayObject class can be put into the collection.

This includes text, drawings, bitmaps, and animated pictures. A MDisplay-
Object accepts a display box and a collection of visible rectangles from its

mode to display its contents.

A SemanticObject supplies the semantics of a mode. The term "supply"
is used instead of "generate" because in MoDE, the actual semantics ar,
"generated" by the application but they are "supplied" to the interface by
a separate "semantic object," described here. Semantic objects can also

connect to each other. They reside in a layer maintained by MoDE. Objects

in the layer have knowledge of both the user inttrface and the application.

They insulate both sides from the effects of changes.

The MController, MDisplayObject, and SemanticObject define parts of a
mode that are appro:-imately orthogonal to each other. As a consequence,
they are more likely to be reused.

11

6 A Comparison to MVC

This section discusses some of the differences between the Mode framework

and the Smalltalk MVC framework to show how the parts of a mode can

be decoupled. The decoupling of the parts of a mode demonstrates the

orthogonality of the Mode framework design. Although the comparison is

made only for two specific systems, many of the points are applicable to more

general cases. In the following discussions, the model, view, and controller

of MVC are compared with their counterparts in MoDE.

Controllers

In MVC, controllers are often involved in processing the semantics in addition

to their defined role as interface objects. For example, many controllers are

responsible for creating menus, invoking them, and executing the selected

operations. Many subclasses of Controller are created just to have different

menus. For instance, the IconController and the ProjectIcon Controller are

the same except for their menus. In MoDE, controllers are not involved

in semantic processing. They invoke menus to interact with the user but

leave the creation of menus and execution of the operations to the semantic
objects. Since the controller does not have deep knowledge of the menus, it is

less tightly coupled to the semantics of the system. This reduces the number

of controller classes while making the existing controllers more reusable.

A rough analogy can be drawn between a user interface and a restaurant.

The controllers in a user interface correspond to the waiters in a restaurant.

The semantic objects correspond to the cooks. In a normal restaurant, the

cooks defines the menu and prepare whatever is on the menu. A waiter

brings the menu to the customer (corresponding to the end user) and passes

the selections back to the cooks. This procedure is analogous to the way

12

MoDE handles menus'. Just as there is no reason for the waiters to define

the menu and cook the dishes, there is no reason for the controller to create

the menu and perform the operations (as some MVC controllers do).

In MVC, some controllers (BinaryChoice Controller, for example) query

the state of their models to determine what kind of interaction to perform.

This couples the controllers with their models. In MoDE, when the state

of a semantic object changes and requires a different interaction, a different

controller is assigned to the mode. No controller should have to query the

state of its semantic object. This approach is actually used in MoDE to

provide semantic feedback for dragging. When a mode is dragged by the
user, all other modes on the screen switch to their drag-handling controllers.

For example, the trash mode switches to a controller that highlights the mode
when the dragged object is on top of it and responds to the mouse button

release event to discard the dragged mode. The trash mode switches back to

its normal controller after the drag action is finished.

Another limitation on MVC controllers which impedes orthogonality is
their polling protocol. The MVC controllers must constantly query their

views for the information necessary to decide when and where to pass control.

The event-driven mechanism of MoDE takes charge of the control passing.
This frees the controller from querying the mode and makes the two less
dependent on each other.

Views

Some MVC views also overstep their authority by incorporating semantic

information. These views often keep information and code that could be de-

composed and distributed more appropriately among semantic objects and

subviews. For example, the SelectionInList View keeps the list of items, re-

members which one of them is selected, and highlights or dehighlights the

1Some Smalltalk pluggable views handle their menus similarly.

13

items. The SelectionlnList View has to do all this because it is at the end of

the view hierarchy (it has no subviews). The list items are not subviews.

With the Mode framework, on the other hand, each list item is a mode

and knows how to highlight and dehighlight itself. The instance variables and

the code to handle the selection are moved to their semantic objects. This

not only simplifies the interface but also makes it more flexible. For example,

one can use bitmaps, drawings, and animated pictures in the display object

of the list item modes to create a nontext list. One can also freely select the

highlight styles for each individual list item (as opposed to having a single

fixed inverse highlight for all of them).

Smalltalk menus, which are not built with MVC, provide a related exam-

ple. A Smalltalk menu is a single complicated o-;ect. In MoDE, menus are

built with modes: each menu item is a mode; .ais makes the menus more

flexible. Item modes can also share components with the list mode.

Models

In MVC, models do not have direct access to their views and controllers.

When a model changes, a message is broadcast to notify all of its views

and controllers. The views and the controllers then query the model and

update themselves to reflect the change. This has several disadvantages. For

example, the model may be a widely shared data object that has a large

number of views. Having all the views query it whenever there is a change is

costly. Also, the broadcast mechanism usually requires smart user interfaces

that know how to query the models and update themselves. The code that

supports this intelligence goes to either the view class or the controller class.

Thus, knowledge of the application (model) is inserted into the user interface.

Once this is done, the model, view, and controller are, in fact, coupled.

The Mode framework solves this problem by abstracting this intelligence

14

View
I,-- -- - - -

MIisplayObject ----

Mode Minmanticjject Application

-Model

--------- - - - -

Use Inefc Aplcto

wor tha in th Modermewrk

I 1' U-7

R eam ox

Figure 6: Using the Mode Composer.

into the semantic object. This frees the other objects from the need to be
coupled with each other. Figure 5 shows the partition of responsibilities in
the Mode framework and in the MVC framework. The circles indicate the

objects in the Mode framework. The dashed lines show the corresponding
MVC objects (their names are in italics).

7 Mode Composer

The Mode Composer is the direct-manipulation user interface of MODE. It

allows the user to create an interface, edit it, and connect the interface to

the application through direct manipulation.

The user creates interfaces by dragging modes out of the interaction tech-

16

I " tI r

Dr T7-

Icni My01110

Rxed 511. Labd4l

Figure 7: The interaction technique library.

nique library (the right-hand window in Figure 6) and pasting them together.

Visual representatives of semantic objects and application objects can be cre-

ated and manipulated directly. In Figure 6, the user has finished the layout

and connection of the interface (an upside-down window) and is asking the

system to create a subclass of the "aBackground" semantic object.

All interfaces created with the Mode Composer are immediately testable

at any stage of the development. Thus, there is no need to switch to a test

state. After the interface is created and tested, it can be promoted into

the library for future use. In figure 7, the upside-down window has been

promoted into the interaction technique library and is represented by an

icon. The user can also store it in a file and share it with other user interface

developers.

The interaction technique library of the Mode Composer stores proto-

types [4] of the interaction techniques. As a consequence, each library object

represents a prototype instead of a class. Once an interaction technique is

promoted into the library, it can be reused immediately by making copies of

its prototype.

17

easly ntrdue nw ojets ntothelirar isalo sntial the ene rait

8d~p Expeienc withMoD

ct 1[o r O 18

hoghIam a

Figure 8: Sample user interfaces created with MODE.

Besides the orthogonal design of the Mode framework, the capability to

easily introduce new objects into the library is also essential to the generality

of the system. If an interface builder were to have a fixed set of library

objects, the kinds of interfaces that it could create would be limited. Since the

user of MoDE can freely promote new objects into the interaction technique

library, MoDE is not limited in this respect.

8 Experience with MoDE

18

Figure 9: The Mode Composer is used to edit itself.

Sample. Interfaces

MoDE has been used to create many direct-manipulation user interfaces. Fig-

ure 8 shows a few sample interfaces created w;th it. The scroll bar in the top

left window (Roam demo) scrolls the picture continuously. The top right win-

dow (Menu demo) has three types of menus: title-bar menu, tear-off menu,

and pop-up menu (not displayed). Menu items can be text, foreign char-

acters, bitmaps, and animated pictures. The lower left window (titled "For

Barry") demonstrates the system's capability to incorporate scanned images

and text editors. The largest window (titled "OddShape Window") contains
two subwindows; both allow the user to create networks of hypertext nodes.

The oddly shaped subwindow has three nodes in it. The user is dragging one

of the nodes over the trash icon in another window (titled "Level of DM").

The trash icon opens to provide semantic feedback. Rubber-band lines are

drawn from "Oddi" node and "Odd3" node to the node being dragged to

show the connection. Notice that the oddly shaped subwindow has a hole

in it through which the user can work with objects (for example, the "Be-

lowl" node) underneath the window. MoDE also supports semi-transparent
windows as shown in the right half of the oddly shaped subwindow.

19

Self-Creation

Not only is the Mode Composer an important component of MoDE, it is

also an important application of MoDE. To demonstrate the generality of

MoDE, the user interface of the Mode Composer was created using itself.

Consequently, the Mode Composer can be used to edit itself. For example,

in Figure 9, the user is using the Mode Composer to examine the connection

between the "ShrinkBox" and the "Window" of the interaction technique

library. The user has also made some changes to the Mode Composer. The

two scroll bars of the interaction technique library have been removed, and

a "Roam Box" (a two-dimensional scrolling device) has been attached.

Since it is easy for users to customize the user interface of the Mode

Composer, the interface images shown in this document represent only a

small sample of those developed by the author.

Effectiveness

In an informal experiment to study the effectiveness of MoDE, two groups

of subjects were asked to create the same problem interface. One group

(consists of Smalltalk programmers with less than three months experience)

used MoDE exclusively; the other group (consists of Smalltalk programmers

with 1.5 to 5 years experience) used whatever tools they liked except MoDE.

The group using MoDE were able to finish the assignment both faster and

with fewer unimplemented features than the other group. Time data collected

from this informal experiment suggest that MoDE reduces the time required

to develop a prototype interface by nearly an order of magnitude.

Classes Do Not Make Good Types

The interaction technique library is an interesting example of classes not

making good types. Observation shows that the users of MoDE naturally

treat each object in the library as a type. For example, a user might drag a

button out of the library, change its border width, and promote the changed

20

button back to the library. From then on, he would think he has two types

of buttons instead of one. The same thing happened to changes made to

the controller and the semantic object. Even though the two buttons are

composed of parts from the same classes, they are treated as different types.

Since differences in the interaction technique library come more from the

values of the instance variables of the objects than the classes to which they

belong, classes are not sufficient to differentiate these types. This supports

the choice of using prototypes which preserve the values of the instance vari-

ables, instead of classes, to represent objects in the interaction technique

library.

9 Conclusion

MoDE provides an effective environment for developing user interfaces in

Smalltalk. The capability to uncouple the parts of a mode not only increases

reusability but also results in a more flexible system with which a wide va-

riety of interfaces can be developed. Experience with the Mode Composer

indicates that its direct-manipulation interface substantially reduces the time

and effort required to create and manage user interfaces in Smalltalk.

MoDE is currently being used to create interfaces for a hypertext soft-
ware development system. The author is also exploring the possibility of

augmenting MoDE to automatically generate code for X Window System.

(A similar project has been done by hand.)

21

10 Acknowledgement

A number of organizations and people have contributed to the work reported

here. The author is grateful to the National Science Foundation (Grant #

IRI-85-19517) and the Army Research Institute (Contract #MDA903-86-C-

0345) for their support of this research. This work has been done as part of

the author's dissertation project under the supervision of Professor John B.

Smith. Barry Elledge and John Maloney provided valuable comments and

suggestions for this paper. The Textlab Research Group within the Depart-

ment of Computer Science at the University of North Carolina at Chapel Hill

has provided a provocative and supportive intellectual environment for this

work.

References

[1] Sam S. Adams. Metamethods: The mvc paradigm. HOOPLA!, 1(4), July

1988.

[2] A. Goldberg and D. Robson. Smalltalk-80: the Language and Its Imple-

mentation. Addison-Wesley, 1983.

[3] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-
controller user interface paradigm in smalltalk-80. Journal of Object-

Oriented Programming, 1(3):26-49, August/September 1988.

[41 Henry Lieberman. Using prototypical objects to implement shared be-
havior in object oriented systems. OOPSLA '86: Object Oriented Pro-

gramming, Systems and Applications, pages 214-223, September 1986.

22

[5] Yen-Ping Shan. An event-driven model-view-controller framework for

smailtalk. In OOPSLA '89: Object Oriented Programming, Systems and

Applications, pages 347-352, October 1989.

23

